Содержание
В данной статье я буду рассматривать все процессы применительно к автономной системе отопления частного дома с автоматическим газовым котлом и приведу пример конструкции расходомера на базе бытового недорогого счетчика воды.
Расход теплоносителя (в моем случае воды) в системе отопления является одним из главных параметров, который влияет на поддержание заданного микроклимата в помещении при любых погодных условиях и наряду с другими параметрами определяет качество функционирования системы отопления в целом. Расход теплоносителя показывает какой его объем прошел через систему отопления за определенное время. Так как система отопления может быть разветвленной — например на первом и втором этажах дома может быть два независимых контура отопления — то расход теплоносителя мы будем рассматривать применительно к отопительному котлу. Необходимый номинальный расход теплоносителя рассчитывается на этапе проектирования системы отопления и в процессе ее эксплуатации должен оставаться неизменным. О методах расчета необходимого расхода теплоносителя я расскажу в отдельной статье, в которой будет приведен пример расчета простой системы отопления небольшого частного дома.
Возможно некоторым читателям более понятным будет термин скорость циркуляции теплоносителя или скорость потока теплоносителя в трубах, но скорость циркуляции в отличии от расхода зависит от сечения трубы и на разных участках системы отопления будет разной. Поэтому удобнее пользоваться таким понятием как расход.
Причины по которым расход теплоносителя может уменьшаться:
- отложение накипи внутри теплообменника котла или засорение труб системы отопления, в результате чего увеличивается сопротивление потоку теплоносителя, а значит уменьшается его скорость и, как следствие, объем, прошедший через котел за определенное время, то есть расход;
- засорение фильтров в системе отопления;
- уменьшение производительности циркуляционного насоса из-за всевозможных неисправностей.
Признаки уменьшения расхода теплоносителя в действующей системе отопления:
- котел начал часто включаться и выключаться;
- теплоотдача в системе отопления уменьшилась, батареи прогреваются не полностью даже при установке максимальной температуры отопления на котле, как следствие температура в помещении может быть занижена;
Но указанные признаки могут иметь и другие причины, поэтому было бы неплохо контролировать уровень расхода теплоносителя в своей системе отопления. В таком случае необходим расходомер.
Расходомер на базе бытового счетчика воды.
В моей системе отопления в качестве теплоносителя используется вода. Для контроля расхода теплоносителя я использовал обычный бытовой счетчик воды, который установил на входе теплоносителя в котел (на обратке). При этом счетчик выступал в качестве индикатора, по которому было видно есть ли циркуляция в системе и примерно оценить ее скорость по вращению счетного механизма счетчика. Чтобы узнать расход необходимо было отсчитать по секундомеру определенное время и зафиксировать показания счетчика в начале и конце отрезка этого времени. Конечно это не удобно. Тогда я и задался целью встроить в счетчик дисплей и микроконтроллер, который бы сам считал расход. Таким образом и родилось описываемое ниже устройство.
Счетчик воды со снятым счетным механизмом
Принцип работы счетчика воды очень прост. В нижней герметичной части счетчика расположена крыльчатка, которая вращается за счет потока воды, протекающей через счетчик. На крыльчатке установлены магниты. Счетный механизм крепится сверху на герметичную часть и тоже имеет на одной из шестеренок магнит. Таким образом с помощью магнитного сцепления осуществляется передача вращения крыльчатки на счетный механизм.
Если расположить датчик Холла в месте расположения вращающихся магнитов (в основании счетного механизма) мы получим электрические импульсы, которые уже можно подсчитать микроконтроллером и вывести на дисплей. Вот и вся идея. Дальше, как говорится, дело техники.
Датчик Холла, закрепленный в основании счетного механизма счетчика
В качестве дисплея был выбран светодиодный семисегментный двухразрядный индикатор. Расход теплоносителя было решено измерять в литрах в минуту. Объясню почему именно такая размерность. Я не буду вдаваться в теорию, но ориентировочно расход в литрах в минуту должен быть примерно равен мощности в кВт, отдаваемой котлом на нагрев воды. Например, если ваш котел отдает мощность 10 кВт, то расход теплоносителя должен составлять 10 литров в минуту, при этом разница температур на входе и выходе котла составит 15°С. Таким образом двух разрядов индикатора вполне хватит, что бы отображать расход воды от 1 л/мин и выше. Но, следует отметить, что если необходимо измерять расход теплоносителя больше 20 л/мин, то необходимо использовать счетчики с большим диаметром условного прохода, Ду-20 и выше. В моем опытном устройстве используется счетчик Ду-15.
В качестве устройства для вывода значений расхода теплоносителя на дисплей и подсчета импульсов с датчика Холла была выбрана плата Arduino nano V3. Данная плата содержит микроконтроллер со всей необходимой обвязкой и возможностью быстрого программирования, что очень удобно. Производительности данного микроконтроллера и платформы Arduino для реализации нужного нам алгоритма более чем достаточно.
Для установки всех электронных компонентов расходомера теплоносителя была разработана печатная плата с размерами, позволяющими закрепить ее в корпусе счетного механизма счетчика. Плата была разведена в программе Sprint Layout 5.0. Ниже на фото показана плата с установленными компонентами. Часть компонентов схемы установлено со стороны печатных проводников с обратной стороны платы. Сама плата закреплена на основании счетного механизма. Рядом для сравнения показан счетный механизм счетчика воды без корпуса.
На следующем фото показана обратная сторона платы и проводные соединения с датчиком Холла, который установлен на основании счетного механизма рядом с пластиковой шестеренкой. Как раз внизу данной шестеренки закреплен магнит, который и воздействует на датчик Холла.
Ну и дальше на фото сам расходомер теплоносителя в работе.
Ниже представлена принципиальная электрическая схема расходомера теплоносителя. Модуль А1 это плата Arduino nano.
Выше по тексту я упоминал датчик Холла. На схеме он обозначен как HS1. На самом деле это не «чистый» датчик Холла, а целая микросхема, которая имеет в своем составе датчик Холла, усилитель сигнала датчика, триггер Шмидта, выходной каскад с открытым коллектором и другие вспомогательные элементы. Благодаря всей этой схеме мы имеем на выходе микросхемы сигнал с двумя устойчивыми состояниями — 0 или 1. Микроконтроллер на плате Arduino nano запрограммирован таким образом, что считает переходы из низкого состояния сигнала в высокое (из нуля в единицу).
Для отображения чисел на двухразрядном семисегментном индикаторе используется режим динамической индикации. Для этого все сегменты двух индикаторов соединены параллельно, а выбор разряда осуществляется путем подачи на соответствующий вывод (D1 или D2) индикатора логической единицы (индикатор с общим анодом). Разряды засвечиваются поочередно с частотой, превышающей инерционность зрения человека. В результате мы видим цифры на обеих разрядах индикатора без мерцания.
Диод VD1 защищает устройство от переполюсовки питания. Я установил диод Шоттки для уменьшения потерь напряжения, но это не принципиально. Конденсаторы C1 и C2 улучшают устойчивость работы встроенного стабилизатора напряжения на плате Arduino nano и уменьшают наводки по питанию. Резисторы R1-R7 ограничивают статический ток сегментов индикатора на уровне примерно 5 мА. Так как у нас используется динамическая индикация, то средний ток сегмента будет меньше 5 мА. Данный индикатор очень яркий и хорошо светится даже при токах менее 5 мА.
Схема электрическая принципиальная расходомера теплоносителя автономной системы отопления
Для реализации нужного нам алгоритма работы расходомера был написан скетч в среде Arduino IDE.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 | /* Arduino NANO V3, Atmega 328P, robotdyn.com Измеритель расхода теплоносителя в автономной системе отопления, 10.12.2017 ***************************************************************************/ #include <MsTimer2.h> //библиотека для управления аппаратным прерыванием от Таймера 2 микроконтроллера// #include <Led4Digits.h> //библиотека для управления семисегментными индикаторами http://mypractic.ru/ Led4Digits disp(1, 6,7,255,255, 4,11,10,8,9,3,5,255); //конфигурируем подключение индикатора volatile int pulses = 0; //определяем переменную для подсчета импульсов с датчика Холла int count = 0; //определяем переменную для подсчета аппаратных прерываний void setup() { pinMode(LED_BUILTIN, OUTPUT); //конфигурируем вывод LED_BUILTIN как выход attachInterrupt(0, flowmeter, RISING); //внешнее прерывание на выводе 2 по нарастанию фронта MsTimer2::set(10, timerInterrupt); //задаем аппаратное прерывание каждые 10 мс MsTimer2::start(); //запускаем аппаратные прерывания } void loop() { } void flowmeter() { pulses++; //считаем кол-во импульсов с датчика Холла } void timerInterrupt() { //функция выполняется при возникновении аппаратного прерывания digitalWrite(LED_BUILTIN,0); //гасим встроенный светодиод disp.regen(); //регенерация индикатора (переключение разрядов) count++; //подсчитываем кол-во аппаратных прерываний if (count>=100) { //проверяем когда закончится период в одну секунду disp.print(pulses, 2, 1); //каждую секунду отображаем значение расхода pulses = 0; //после отображения сбрасываем кол-во подсчитанных импульсов count=0; //сбрасываем счетчик кол-ва аппаратных прерываний digitalWrite(LED_BUILTIN,1); //зажигаем встроенный светодиод } } |
Сам скетч подробно закомментирован, я остановлюсь лишь на основных моментах программы.
Для подсчета импульсов с датчика Холла используется режим внешнего прерывания по входу D2 платы Arduino. Программа считает фронты нарастания импульсов, поступающих с датчика Холла. Опытным путем было установлено, что при прохождении через счетчик одного литра воды крыльчатка счетчика делает 30 оборотов. За один оборот крыльчатки с датчика Холла поступает 2 импульса напряжения (на крыльчатке расположено два магнита), то-есть на программном счетчике Arduino мы получим 2 за один оборот. Далее изменение логического состояния на выходе датчика Холла с 0 на 1 будем называть импульсом. Если умножить 2 на 30 мы получим количество импульсов при прохождении через счетчик одного литра воды (теплоносителя). То есть 60 импульсов будут соответствовать 1 литру воды. Таким образом расход теплоносителя через счетчик будет определяться следующей формулой:
G=(Ni/60)*60,
где G — расход теплоносителя в литрах в минуту; Ni — количество импульсов за одну секунду.
Можно сказать, что нам крупно повезло — расход теплоносителя численно равен количеству импульсов датчика Холла за одну секунду. Это очень упрощает программный код. Переменная pulses, в которой хранится количество импульсов датчика Холла за одну секунду, выводится на дисплей без всяких пересчетов и всегда имеет целочисленное значение.
Для вывода значений расхода на семисегментный индикатор используется готовая библиотека Led4Digits, которую я взял . В этом же источнике можно узнать более подробно как работать с данной библиотекой. Для отображения числа на двух разрядах индикатора используется режим динамической индикации. Программно это реализовано через аппаратное прерывание с помощью библиотеки MsTimer2. Обработчик прерывания вызывается каждые 10 мс и переключает разряды дисплея. В этом же обработчике каждую секунду происходит обновление и вывод значения расхода теплоносителя на дисплей.
Расходомер запитан от внешнего нестабилизированного источника напряжением 9 вольт (от старого мобильного телефона). Максимальный потребляемый расходомером ток составляет не более 50 мА.
Файлы для скачивания:
Плата, схема, скетч Скачано: 13, размер: 13.7 KB, дата: 19 Фев. 2018
Строим дом своими руками
Если ваш дом обогревается с помощью системы центрального отопления, то хочется и температуру воздуха в помещении поддерживать достаточную, и экономить средства. Сейчас почти у каждого хозяина имеются приборы фиксации расхода воды, электричества и газа. Еще один способ не выбрасывать деньги на ветер – установить теплосчетчики Купить их можно самостоятельно. А вот монтировать приборы имеет право только организация, располагающая лицензией Главгосэнергонадзора. Данные устройства позволят платить лишь за потребленное вами тепло, а не за среднее значение по нескольким домам, подключенным к общему отапливаемому участку.
Как выбрать счетчик?
Лучше отдавать предпочтение приборам российского производства. И не только из-за их доступной стоимости. Помните, что модель устройства должна быть разрешена к использованию в РФ. Существует пара критических норм, учитывая которые вы сможете подобрать счетчик, обеспечивающий наименьшую погрешность измерений:
- приблизительный расход теплоэнергии;
- диаметр трубы в том месте системы отопления, где будет находиться аппарат.
Встает резонный вопрос о стоимости затеи. Купить теплосчетчики цена на которые зависит от фирмы производителя и технических показателей, – это лишь полдела. Остаются проектные работы и непосредственно монтаж систем.
Разновидности приборов
Тип счётчиков определяет расходометр, установленный в них. Так, данные устройства бывают:
- Ультразвуковые. Работают при условии хорошего качества воды в системе отопления.
- Электромагнитные. Могут давать сильную погрешность при плохом соединении проводов или из-за появления примесей в естественной жидкости.
- Вихревые. Установка магнитно-сетчатых фильтров наряду с такими счетчиками обязательна. Они очень чувствительны к наличию воздуха в трубах и некачественной сварке.
- Механические. Непритязательные приборы. Однако их невозможно использовать при большой жесткости воды, наличии ржавчины и накипи. Также они плохо переносят резкие изменения расхода тепловой энергии.
Расчётливого вам выбора!
Расходомер – это устройство, способствующее корректному функционированию оборудования для обогрева половых покрытий. Приспособление чаще всего используется для балансировки многоконтурных систем с жидким теплоносителем. Установку его производят непосредственно в коллекторе. Обеспечить качественный обогрев здания может только правильный монтаж и регулировка расходомеров теплого пола.
Функциональность и принцип работы расходомера
Основной функцией расходомеров или как их еще называют, поплавковых ротаметров в системе теплого пола является регулировка расхода теплоносителя в водяных контурах. Установка такого устройства позволяет:
- избежать перерасхода электрической энергии в процессе нагрева теплоносителя;
- обеспечить равномерный прогрев всех водяных контуров;
- исключить колебание температурного режима в разных комнатах.
Необходимость использования расходомеров возникает в зданиях, где производится обогрев половых покрытий с разной площадью. Объемные помещения требуют большей длины трубопровода, поэтому прогреваются они менее интенсивно, чем маленького размера комнаты. Поэтому достичь равномерного прогрева и обеспечить комфортную температуру во всем доме можно только с таким приспособлением.
Расходомер для системы обогрева пола представляет собой устройство механического типа с пластмассовым или латунным корпусом. Внутри его находится поплавок из полипропилена. На верхней части корпуса находится прозрачная колба с разметками. В процессе циркуляции теплоносителя поплавок приходит в действие, перемещаясь по направлению вверх-вниз. Согласно его расположению можно с помощью шкалы определить объем жидкости в трубопроводе.
Критерии выбора
От правильного подбора расходомера зависит качество функционирования системы обогрева теплого пола. Выпускают три вида ротаметров:
- Измерительный. Такой тип расходомера устанавливается с вентилем ручной регулировки. Управление производится с учетом измерительных показаний.
- Регулирующий. Выполняет одну только функцию – контроль количества жидко теплоносителя, поступающего в водяные контуры.
- Комбинированный. Такой прибор совмещает в себе два действия – регулировку и измерение. Стоимость изделия значительно выше от моделей выполняющих однотипные функции.
При покупке расходомера для теплого пола следует обращать внимание та такие параметры изделия:
- Материал корпуса. Высокой износостойкостью обладают устройства из латуни. Сверху такой корпус должен быть покрыт никелем. Пластмассовые изделия более дешевые, но они имеют пониженный показатель прочности.
- Целостность прибора. Перед приобретением ротаметра рекомендуется произвести внимательный осмотр корпуса и прозрачной колбы, чтобы исключить наличие трещин или других дефектов.
- Внутренняя часть. Пружина в середине корпуса расходомера должна быть изготовлена из нержавеющей стали.
- Колба. Прозрачный колпачок с измерительной шкалой в качественных моделях изготавливается из поликарбоната. Такой материал достаточно крепкий и имеет высокую термостойкость, что особенно важно при использовании в отопительных системах.
- Технические характеристики. В инструкции, прилагаемой к прибору указателя уровень температуры. Такой показатель должен быть не ниже 110 градусов. Также не менее важным является давление – не менее 10 бар.
- Максимальное значение пропускной способности. Ротаметр должен иметь возможность проводить через себя за час не менее 2-4 метров теплоносителя.
Расходомер для теплого пола
К производителю изделия также следует подходить внимание. Основным показателем надежности изделия является наличие сертификата качества и предоставление гарантии, которую ответственные фирмы надают до пяти лет.
Монтаж и регулировка
Согласно указаниям производителей подключение ротаметра осуществляется на обратный коллектор, но существует вариант установки прибора на подачу.
Основным требованием к монтажу устройства является вертикальное его расположение. Такая установка позволяет определять точное значение уровня жидкости в колбе. Поэтому гребенка должна размещаться строго горизонтально по уровню.
Ротаметр подсоединяется посредством вкручивания в соответствующее гнездо на коллекторе. В комплектацию к прибору входит уплотнительное кольцо и накидная гайка. Дополнительно уплотнять устройство герметиком или другими материалами не нужно.
Рабочий процесс коллектора соединенной цепи – коллектор и расходомер должен быть полностью автоматизированный. Поэтому к системе дополнительно подключается термодатчик. При такой схеме система при достижении заданного температурного режима теплоносителя перекрывает его полный или частичный доступ к контурам.
Монтаж расходомеров теплого пола
Весь монтажный процесс и регулировка ротаметра для теплого пола выполняется в такой последовательности:
- Расходомер нужно вкрутить в специально предназначенное на коллекторе технологическое отверстие. Прибор устанавливается с помощью ключ строго в вертикальном положении.
- Провернуть против часовой стрелки и снять прозрачную колбу, расположенную в верхней части корпуса расходомера. После этого необходимо снять кольцо, которое установлено для защиты производителем. Затем одеть колпачок с разметками обратно.
- За часовой стрелкой выполнить повороты корпуса до необходимого показателя уровня напора. Такое действие представляет собой балансировку скорости потока теплоносителя. При этом заданная величина должна отобразиться на шкале.
После таких действий требуется проверка рабочего процесса всей системы обогрева половых покрытий. Во время эксплуатации теплого пола не следует закрывать колбу на расходомере. Шкала должна быть постоянно на виду, так как иногда возникает необходимость балансировки в ходе работы отопительного оборудования.
Для защиты от внешнего воздействия коллекторную группу вместе с расходомером рекомендуется поместить в специальный шкафчик или сделать нишу в стене с закрывающейся дверкой.
Согласно техническим правилам следует проводить идентичную укладку нескольких контуров, включая их протяжность. Иначе даже использование коллектора с ротаметром не даст положительного результата, и система будет функционировать некорректно.
Особенности корректировки
Для каждой отдельной комнаты поводится отдельная регулировка ротаметров. Управление выполняется согласно схеме установленных контуров. При этом берется во внимание уровня нагрева жидкости и давления.
Рекомендуется выполнять балансировку согласно такой инструкции:
- Определяется полное количество проходящего за одну минуту через коллектор теплоносителя. Показатели берутся в литрах. Полученное значение принимается за 100 процентов.
- Вычисляется процентный расход каждого отдельного водяного контура. Результат переводится в литры за минуту.
- На расходомере выполняется регулировка количества подаваемой жидкости в трубопровод.
С помощью таких действий можно выполнить продолжительную корректировку водяного контура. Чтобы обозначить фактические параметры необходимо наблюдать за показателями расходомера. Согласно наблюдениям можно точно определить расход контуров, подключенных к коллектору.
Коллектор с расходомерами для теплого пола
Регулировка расходомера выполняется в зависимости от установленной модели. После подсоединения прибора к коллектору следует выполнить предварительную настройку, установив начальную позицию, которая открывает доступ жидкости.
В ротаметрах без встроенного вентиля, используется дополнительное запорное устройство для установки положения «открыто». При этом балансировка выполняется в процессе функционирования системы.
Комбинированные приборы для учета расхода теплоносителя могут предварительно настраиваться с помощью полных оборотов встроенного вентиля. Каждый виток позволяет уменьшить просвет на установленное значение.
Корректировка расходомера системы обогрева пола выполняется с учетом контроля скорости жидкости за одну минуту — от 0,5 до 5 литров.
Перед началом настройки ротаметра следует проверить состояние установленного контура. Пробное тестирование необходимо чтобы исключить наличие протечек в контуре, которые могут стать причиной искажения показателей в приборе.
Расходомер является важным элементом в многоконтурной системе обогрева половых покрытий. Устройство позволяет обеспечить равномерный поток жидкости во все отдельные трубопроводы. Чтобы отопительное оборудование функционировало максимально эффективно, следует правильно подобрать ротаметр, а также провести его монтаж и настройку согласно техническим требованиям.