Тепловой насос своими руками

Как сделать тепловой насос своими руками

Ниже описаны некоторые рекомендации по созданию данных приборов:

  • Первым делом, следует заняться приобретением компрессора, к примеру, такого как в кондиционере. Как правило, он крепится к стенке.
  • Изготовление другой важной части изделия, конденсатора, вполне реально выполнить своими руками. Чтобы сделать это, нужно медную трубу (диаметр не должен быть меньше 1 мм) изогнуть в форме змеевика, и уже в таком состоянии поместить в глубь металлического или пластикового корпуса. Как корпусом, можно пользоваться баком, подходящим по размерам. По окончании установки змеевика, части бака свариваются, и производится монтаж необходимых резьбовых соединений. Монтаж испарителя также чаще всего производится к стенке. Подсказка: для изготовления качественного змеевика, лучше всего произвести намотку медной сантехнической трубы поверх цилиндрического основания нужной толщины, для этого можно пользоваться газовым баллоном. Для достижения одинакового расстояния между витков, пользуются перфорированным алюминиевым уголком, на который и крепят витки змеевика.
  • Окончательным монтажом данных деталей, а именно пайкой медной трубки, закачкой фреона и т. п. должен заниматься исключительно профессиональный рабочий высокой квалификации. Выполнение этих работ без должного опыта может стать причиной повреждения оборудования, а помимо этого, значительно повышается вероятность получить бытовую травму.
  • Следующий этап – это подключение конструкции к отопительной системе строения.
  • После этого, следует перейти к монтажу и подключению наружного контура. Данный процесс обладает своими особенностями, которые различаются в зависимости от вида теплового насоса. Важно: до запуска теплового насоса, следует провести диагностику электрической проводки в доме и счетчика электроэнергии. Если описанное является ветхим и устаревшим, то потребуется замена. Приемлемой мощностью, которой обладает электросчетчик, можно считать отметку выше 40 ампер.

Стоит отметить, не всегда работа теплового насоса в отоплении дома полностью удовлетворяет всем требованиям хозяев. Обычно, это является следствием того, что термодинамические расчеты были выполнены неправильно. Результатом такой ошибки становиться система малой мощности, либо система получается слишком мощной, а это связано с перерасходом электроэнергии.

Для подбора системы, имеющей подходящую мощность, следует выполнить расчет теплопотерь постройки, и множество других расчетов. Такой расчет должен выполнять опытный инженер-проектировщик.

>Тепловой насос своими руками видео

Насосы для отопления или тепловые насосы

У традиционных источников энергии есть один недостаток — большие финансовые затраты, кроме этого, они почти истощены. Человечеству ничего не остается, как заниматься поиском альтернативных источников энергии. Одними из таких источников на сегодняшний день являются насосы для отопления или тепловые насосы. Тепловой насос является экологически чистым и экономичным способом, обустроить отопление в доме.

Так как чистота окружающей среды в последнее время выходит на первый план ,тепловые насосы становятся все более популярными по всей планете. Приблизительные подсчеты показывают, что в мире существует 100 млн. насосов для отопления. Тепловыми насосами наиболее активно пользуются люди в таких странах как США, Япония и в европейских государствах.

Эти государства обладают даже специальными строительными нормами, по которым в новых домах тепловые насосы должны быть установлены в обязательном порядке.

Некоторые страны, к примеру, Швеция, могут похвастаться процентным соотношением тепловых насосов к другим отопительным системам 70 на 30.
Все тепловые насосы делятся на такие подвиды:

  • Грунт – Вода. Тепловые насосы этого вида пользуются геотермальной энергией почвы. Исполнение грунтового коллектора может быть горизонтальное или вертикальное. Ниже температуры промерзания, почва имеет постоянную температуру, какой бы холодной не была зима. Это дает возможность эффективно преобразовывать низко потенциальное тепло, и использовать его, чтобы обустроить горячее водоснабжение в загородном доме.
  • Вода – Вода. Тепловые насосы этого вида пользуются как источником тепла подземными грунтовыми водами. Такая вода круглогодично обладает температурой от 7 до 12 °С. Необходимое условие использования такого теплового насоса – это достаточное количество воды, которая будет прогнана по тепловому насосу. Данный параметр определяется производительностью насоса. Также, особого внимания требует и качество грунтовых вод.
  • Воздух – Вода. Тепловые насосы этого вида используют как источник тепла атмосферный воздух, недостатка в котором никогда не бывает. Кроме этого, такие тепловые насосы могут пользоваться сбросовым теплом — теплым воздухом, получаемым при охлаждении, к примеру, компрессоров. Данные тепловые насосы могут использоваться в отоплении и горячем водоснабжении, а так же как охладители помещений, если включены в моно электрическую схему. В условиях слишком низких температур, пользуются пиковым электрообогревателем, чтобы покрыть все потребности постройки в отоплении. Эти насосы могут служить дополнением для уже существующих отопительных систем.
  • Воздух – Воздух. В тепловых насосах такого вида, тепло берется из воздуха или приточно-вытяжного воздуха, смотря какая конструкция. В данных насосах устанавливают высокопроизводительные радиальные вентиляторы, что позволяет решить проблемы вентилирования постройки, рекуперации тепла, осушки воздуха и поддержания микроклимата в винных погребах.
    Тепловые насосы – это будущее в развитии отопления.

Принцип работы и устройство агрегата

О том, что интенсивное трение приводит к нагреванию поверхностей или сред, хорошо знает любой школьник. Евгений Френетт создал удивительно простой отопительный прибор, в котором применяется это физическое явление. Изобретатель использовал два цилиндра разного размера. Меньший по диаметру цилиндр был помещен в полый цилиндр большего диаметра. Между наружной поверхностью первого и внутренней стенкой второго цилиндра было залито масло. Малый цилиндр с одной стороны был подключен к электромотору, а с другой стороны к нему приделали крыльчатку вентилятора.

Это схема теплового насоса, который был запатентован Евгением Френеттом еще в 1977 году. Позднее модель многократно перерабатывалась и улучшалась

При интенсивном вращении внутреннего цилиндра масло, залитое в устройство, нагревалось до достаточно высоких температур. Крыльчатка вентилятора позволяла быстро распространять тепло в пространстве помещения. Для удобства использования рабочие цилиндры помещали в корпус с отверстиями для воздуха. Оптимизировать работу устройства можно было с помощью термостата.

Несмотря на похожее название, устройство Френетта и его аналоги не имеют никакого отношения к тепловому насосу, в котором на основании обратного принципа Карно низкопотенциальная энергия окружающей среды (воды, земли, воздуха) преобразуется в тепловую энергию с высоким потенциалом. Объединяет их только тот факт, что обе системы успешно используются для обогрева жилищ.

Вариации на «Френеттовскую» тему

И сам изобретатель, и его последователи за прошедшие годы неоднократно улучшали тепловой насос френетта. Интересна модель, в которой барабан размещен горизонтально, а по центру системы расположен вал, часть которого размещена снаружи. Такая конструкция должна быть выполнена очень тщательно, чтобы не допустить просачивания жидкости в местах соединения корпуса с валом.

В этой модели теплового насоса Френетта движущийся вал выведен наружу, а ось вращения перемещена из вертикального положения в горизонтальное

В этом случае вентилятор отсутствует, а теплоноситель из теплового насоса поступает в теплообменник, роль которого может выполнить обычный радиатор отопления или даже система центрального отопления дома.

В этой модели насоса Френетта используются одновременно два барабана, а теплоноситель перемещается по замкнутой системе через теплообменник или радиатор

Позднее был разработан проект теплового насоса Френетта, в котором для разогрева теплоносителя использовалось два барабана. Система была дополнена крыльчаткой. Под воздействием центробежных сил разогретое масло выбрасывалось из отверстий этой крыльчатки. В результате жидкость попадала в небольшой зазор между ротором и корпусом устройства, что позволяло использовать такой насос с очень высокой эффективностью.

Использование высокопрочной крыльчатки в тепловом насосе Френетта позволяет улучшить производительность устройства. Теплоноситель выходит через узкие отверстия, расположенные по краям

Наиболее оригинальным вариантом можно считать версию хабаровских ученых Назыровой Натальи Ивановны, Сярг Александра Васильевича и Леонова Михаила Павловича. Рабочая часть этого устройства внешне напоминает гриб. В качестве рабочей жидкости используется вода, которая достигает кипения и превращается в очень горячий пар. Под действием реактивной силы пара вода движется по каналам устройства со скоростью 135 м/мин, что позволяет обходиться без внешнего источника питания.

Примерная схема универсальной генерирующей установки, разработанной в Хабаровске: 1 — емкость; 2 — входной патрубок; 3 — выходной патрубок; 4 — водонагреватель; 5 — подшипниковый вал

Обратите внимание! Не стоит пытаться повторить опыт ученых из Хабаровска и создавать подобный универсальный генератор для домашнего использования. Эта конструкция была разработана исключительно для промышленного применения.

Разобравшись в принципах устройства насоса Френетта, любой изобретатель может внести в его конструкцию собственные коррективы, чтобы улучшить работу прибора или упростить его монтаж.

Как самостоятельно изготовить такое устройство?

Самым практичным для обогрева жилищ считается модель теплового насоса Френетта, в которой отсутствует вентилятор и внутренний цилиндр. Вместо этого используется множество металлических дисков, которые вращаются внутри прибора. Роль теплоносителя выполняет масло, которое поступает в радиатор, охлаждается и затем возвращается в систему. Работа такого устройства убедительно продемонстрирована в видеоматериале:

Для знающих английский язык может пригодиться такое видео:

Изготовить тепловой насос по принципу Евгения Френетта в домашних условиях не сложно. Для этого понадобится:

  • металлический цилиндр;
  • стальные диски;
  • гайки;
  • стальной стержень;
  • небольшой электромотор;
  • трубы;
  • радиатор.

Диаметр стальных дисков должен быть немного меньше диаметра цилиндра, чтобы между стенками корпуса и вращающейся частью был небольшой зазор. Количество дисков и гаек зависит от размеров конструкции. Диски последовательно нанизывают на стальной стержень, разделяя их гайками. Обычно используются гайки, высота которых составляет 6 мм. Цилиндр следует заполнить дисками до верха. На стальной стержень наносят наружную резьбу по всей его длине. В корпусе делают два отверстия для теплоносителя. Через верхнее отверстие разогретое масло будет поступать в радиатор, а снизу оно будет возвращаться в систему для дальнейшего нагрева.

В качестве теплоносителя разработчики устройства рекомендуют использовать жидкое масло, а не воду, поскольку температура кипения такого масла в несколько раз выше. При быстром нагреве вода может превратиться в пар и в системе возникнет избыточное давление, что может привести к повреждению конструкции.

Это примерная схема конструкции теплового насоса Френетта, которую не сложно реализовать с помощью подручных средств и доступных материалов

Для монтажа стержня с резьбой также понадобится подшипник. Что касается электродвигателя, подойдет любая модель, обеспечивающая достаточное количество оборотов, например, рабочий двигатель от старого вентилятора.

Процесс сборки устройства происходит следующим образом:

  1. В корпусе проделывают два отверстия для труб отопления.
  2. По центру корпуса устанавливают стержень с резьбой.
  3. На резьбу навинчивают гайку, ставят диск, навинчивают следующую гайку и т. д.
  4. Монтаж дисков продолжают до заполнения корпуса.
  5. В систему заливают жидкое масло, например, хлопковое.
  6. Корпус закрывают и фиксируют стержень.
  7. К отверстиям подводят трубы радиатора отопления.
  8. К центральному стержню присоединяют электродвигатель, который обеспечивает вращение.
  9. Включают прибор в сеть и проверяют его работу.

Чтобы улучшить работу теплового насоса этого типа и сделать его использование более удобным и экономичным, рекомендуется применить систему автоматического включения-отключения для двигателя. Управляется такая система с помощью термодатчика, который крепят прямо на корпус устройства.

Все правда о тепловых насосах


Этой осенью наблюдается обострение в сети по поводу тепловых насосов и их применения для отопления загородных домов и дач. В загородном доме, который я построил своими руками, с 2013 года установлен такой тепловой насос. Это полупромышленный кондиционер, способный эффективно работать на обогрев при уличной температуре до -25 градусов по Цельсию. Он является основным и единственным отопительным прибором в одноэтажном загородном доме общей площадью 72 квадратных метра.
За спиной уже 3 года полноценной эксплуатации теплового насоса по его прямому назначению и сейчас я хочу поделиться своими впечатлениями. Я провел расчеты и был шокирован — такого результата никто не ожидал!
2. Коротко напомню предысторию. Четыре года назад был куплен участок 6 соток в садовом товариществе, на котором, я, своими руками, без привлечения наемной рабочей силы, построил современный энергоэффективный загородный дом. Предназначение дома — вторая квартира, расположенная на природе. Круглогодичная, но не постоянная эксплуатация. Требовалась максимальная автономность в совокупности с простой инженерией. В районе расположения СНТ отсутствует магистральный газ и на него рассчитывать не стоит. Остается привозное твердое или жидкое топливо, но все эти системы требуют сложной инфраструктуры, стоимость возведения и содержания которой сопоставимо с прямым отоплением электричеством. Таким образом выбор уже был частично предопределен — электрическое отопление. Но здесь возникает второй, не менее важный момент: ограничение электрических мощностей в садовом товариществе, а также достаточно высокие тарифы на электроэнергию (на тот момент — не «сельский» тариф). По факту на участок выделено 5 квт электрической мощности. Единственный выход в данной ситуации — использовать тепловой насос, который позволит сэкономить на отоплении примерно в 2,5-3 раза, по сравнению с прямой конвертацией электрической энергии в тепловую.

Итак, переходим к тепловым насосам. Они различаются по тому, откуда они забирают тепло и по тому, куда его отдают. Важный момент, известный из законов термодинамики (8 класс средней школы) — тепловой насос не производит тепло, он его переносит. Именно поэтому его КОП (коэффициент преобразования энергии) всегда больше 1 (то есть тепловой насос всегда отдает тепла больше, чем потребляет из сети).
Классификация тепловых насосов следующая: «вода — вода», «вода — воздух», «воздух — воздух», «воздух — вода». Под «водой» указываемой в формуле слева подразумевается отбор тепла от жидкого циркулирующего теплоносителя проходящего по трубам находящимся в земле или водоеме. Эффективность таких систем практически не зависит от времени года и температуры окружающего воздуха, но они требуют дорогостоящих и трудоемких земляных работ, а также наличие достаточных свободных площадей под укладку грунтового теплообменника (на котором, впоследствии будет плохо что-либо расти летом, ввиду вымораживания грунта). Под «водой» указываемой в формуле справа подразумевается отоплительный контур, находящийся внутри здания. Это может быть как система радиаторов, так и жидкостные теплые полы. Такая система также потребует сложных инженерных работ внутри здания, но при этом имеет и свои плюсы — с помощью такого теплового насоса можно заодно получить горячую воду в доме.
Но самым интересной выглядит категория тепловых насосов класса «воздух — воздух». По сути это самые обычные кондиционеры. Во время работы на обогрев они забирают тепло из уличного воздуха и переносят его на воздушный теплобменник находящийся внутри дома. Несмотря на некоторые недостатки (серийные модели не могут работать при температурах окружающего воздуха ниже -30 градусов по Цельсию), они имеют колоссальное преимущество: такой тепловой насос очень легко установить и его стоимость сопоставима с обычным электрическим отоплением с помощью конвекторов или электрокотла.
3. На основании этих рассуждений был выбран канальный полупромышленный кондиционер Mitsubishi Heavy, модель FDUM71VNX. По состоянию на осень 2013 года, комплект состоящий из двух блоков (внешний и внутренний) стоил 120 тысяч рублей.

4. Внешний блок установлен на фасаде с северной стороны дома, там где меньше всего ветра (это важно).

5. Внутренний блок установлен в холле под потолком, от него с помощью гибких шумоизолированных воздуховодов обеспечена подача горячего воздуха во все жилые помещения внутри дома.

6. Т.к. подача воздуха находится под потолком (организовать подачу горячего воздуха около пола в каменном доме решительно невозможно), то очевидно, что забирать воздух нужно на полу. Для этого с помощью специального короба забор воздуха был опущен на пол в коридоре (во всех межкомнатных дверях также установлены переточные решетки в нижней части). Рабочий режим — 900 кубометров воздуха в час, за счет постоянной и стабильной циркуляции совершенно нет разницы по температуре воздуха между полом и потолком в любой части дома. Если быть точным, то разница составляет 1 градус по Цельсию, это даже меньше, чем при использовании настенных конвекторов под окнами (с ними перепад температуры между полом и потолком может достигать 5 градусов).

7. Кроме того, что внутренний блок кондиционера за счет мощной крыльчатки способен прогонять в режиме рециркуляции большие объемы воздуха по дому, не нужно забывать о том, что для людей наобходим свежий воздух в доме. Поэтому система отопления также выполняет роль системы вентиляции. По отдельному воздушному каналу с улицы в дом подается свежий воздух, который при необходимости подогревается (в холодное время года) с помощью автоматики и канального ТЭНа.

8. Раздача горячего воздуха осуществляется через вот такие решетки, расположенные в жилых комнатах. Также стоит обратить внимание на то, что в доме нет ни одной лампы накаливания и используются исключительно светодиоды (запомните этот момент, это важно).

9. Отработанный «грязный» воздух удаляется из дома через вытяжку в санузле и на кухне. Горячая вода готовится в обычном накопительном водонагревателе. Вообще, это достаточно большая статья расходов, т.к. колодезная вода очень холодна (от +4 до +10 градусов по Цельсию в зависимости от времени года) и кто-то может резонно заметить, что можно использовать солнечные коллекторы для нагрева воды. Да, можно, но стоимость вложений в инфраструктуру такова, что за эти деньги можно греть воду напрямую электричеством в течение 10 лет.

10. А это — «ЦУП». Главный и основной пульт управления воздушным тепловым насосом. У него есть различные таймеры и простейшая автоматика, но мы используем только два режима: вентиляция (в теплое время года) и нагрев (в холодное время года). Построенный дом оказался настолько энергоэффективным, что кондиционер в нём ни разу не использовался по прямому назначению — для охлаждения дома в жару. В этом большую роль сыграло и светодиодное освещение (теплоотдача от которого стремится к нулю) и очень качественное утепление (шутка ли, после обустройства газона на крыше нам даже пришлось этим летом использовать тепловой насос для обогрева дома — в дни, когда среднесуточная температура опускалась ниже +17 градусов по Цельсию). В доме круглогодично поддерживается температура не ниже +16 градусов по Цельсию, независимо от наличия в нём людей (когда в доме люди, то температура устанавливается +22 градуса по Цельсию) и никогда не выключается приточная вентиляция (потому, что лень).

11. Счетчик технического учета электроэнергии был установлен осенью 2013 года. То есть ровно 3 года назад. Нетрудно подсчитать, что среднегодовое потребление электрической энергии составляет 7000 квтч (на самом деле сейчас эта цифра немного меньше, т.к. в первый год расход был большим из-за использования осушителей во время отделочных работ).

12. В заводской комплектации кондиционер способен работать на обогрев при температуре окружающего воздуха не ниже -20 градусов по Цельсию. Для работы при более низких температурах требуется доработка (на самом деле она актуальна при эксплуатации даже при температуре -10, если на улице высокая влажность) — установка греющего кабеля в дренажный поддон. Это необходимо для того, чтобы после цикла разморозки внешнего блока вода в жидком состоянии успела покинуть дренажный поддон. Если она не успеет это сделать, то в поддоне будет намерзать лед, который впоследствии выдавит раму с вентилятором, что, вероятно, приведет к обламыванию лопастей на нём (можете посмотреть фотографии обломанных лопастей в интернете, я сам с этим чуть не столкнулся т.к. положил греющий кабель не сразу).

13. Как я уже упоминал выше — в доме везде используется исключительно светодиодное освещение. Это важно, когда речь заходит о кондиционировании помещения. Возьмем стандартную комнату, в которой расположено 2 светильника, по 4 лампы в каждом. Если это лампы накаливания мощностью 50 ватт, то суммарно они потребляют 400 ватт, в то время как светодиодные лампы будут потреблять менее 40 ватт. А вся энергия, как мы знаем из курса физики, в конечном итоге все равно превращается в тепловую. То есть освещение на лампах накаливания это такой неплохой обогреватель средней мощности.

14. Теперь поговорим о том, как работает тепловой насос. Всё, что он делает — переносит тепловую энергию из одного места в другое. Именно по такому принципу работают и холодильники. Они переносят тепло из холодильной камеры в помещение.

Есть такая хорошая загадка: Как изменится температура в комнате, если в ней оставить включенный в розетку холодильник с открытой дверцей? Правильный ответ — температура в комнате будет расти. Для просты понимания это объяснить можно так: комната это замкнутый контур, в него по проводам поступает электричество. Как мы знаем энергия в конечном итоге превращается в тепловую. Именно поэтому температура в комнате и будет расти, ведь в замкнутый контур извне поступает электричество и в нём же остается.
Немного теории. Теплота это форма энергии, которая передается между двумя системами из-за разницы температур. При этом тепловая энергия переходит из места с высокой температурой к месту с более низкой температурой. Это естественный процесс. Перенос тепла может осуществляться за счет теплопроводности, теплового излучения или путём конвекции.
Существует три классических агрегатных состояния вещества, преобразование между которыми осуществляется в результате изменения температуры или давления: твердое, жидкое, газообразное.
Для изменения агрегатного состояния тело должно либо получить, либо отдать тепловую энергию.
• При плавлении (переход из твердого состояния в жидкое) поглощается тепловая энергия.
• При испарении (переход из жидкого состояния в газообразное) поглощается тепловая энергия.
• При конденсации (переход из газообразного состояния в жидкое) выделяется тепловая энергия.
• При кристаллизации (переход из жидкого состояния в твердое) выделяется тепловая энергия.
Тепловой насос использует в работе два переходных режима: испарение и конденсацию, то есть оперирует веществом, находящимся либо в жидком, либо в газообразном состоянии.
15. В качестве рабочего тела в контуре теплового насоса используется хладагент R410a. Это фторуглеводород, закипающий (переход из жидкого состояния в газообразное) при очень низкой температуре. А именно, при температуре — 48,5 градусов по Цельсию. То есть, если обычная вода при нормальном атмосферном давлении кипит при температуре +100 градусов по Цельсию, то фреон R410a кипит при температуре почти на 150 градусов ниже. Более того, при сильно отрицательной температуре.

Именно это свойство хладагента используется в тепловом насосе. Путем целеправленного измерения давления и температуры ему можно придать необходимые свойства. Либо это будет испарение при температуре окружающей с поглощением тепла, либо конденсации при температуре окружающей среды с выделением тепла.
16. Вот как выглядит контур циркуляции теплового насоса. Его основные компоненты: компрессор, испаритель, расширительный клапан и конденсатор. Хладагент циркулирует в замкнутом контуре теплового насоса и попеременно меняет свое агрегатное состояние с жидкого на газообразное и обратно. Именно хладагент передает и переносит тепло. Давление в контуре всегда избыточно по сравнению с атмосферным.

Как это работает?
Компрессор всасывает холодный газообразный хладагент низкого давления поступающий из испарителя. Компрессор сжимает его под высоким давлением. Температура повышается (тепло от работы компрессора также добавляется к хладагенту). На этом этапе мы получается газообразный хладагент высокого давления и высокой температуры.
В таком виде он поступает в конденсатор, обдуваемый более холодным воздухом. Перегретый хладагент отдает свое тепло воздуху и конденсируется. На этом этапе хладагент находится в жидком состоянии, под высоким давлением и со средней температурой.
Далее хладагент поступает в расширительный клапан. В нём происходит резкое снижение давления, вследствие расширения объема, который занимает хладагент. Уменьшение давления приводит к частичному испарению хладагента, что в свою очередь снижает температуру хладагента ниже температуры окружающей среды.
В испарителе давление хладагента продолжает снижаться, он еще сильнее испаряется, а необходимое для этого процесса тепло отбирается от более теплого наружного воздуха, который при этом охлаждается.
Полностью газообразный хладагент снова поступает в компрессор и цикл замыкается.
17. Попробую еще раз объяснить попроще. Хладагент кипит уже при температуре -48,5 градусов по Цельсию. То есть, условно говоря при любой более высокой температуре окружающей среды он будет иметь избыточное давление и в процессе испарения забирать тепло из окружающей среды (то есть уличного воздуха). Есть хладагенты используемые в низкотемпературных холодильниках, у них температура кипения еще ниже, вплоть до -100 градусов по Цельсию, но его не получится использовать для работы теплового насоса на охлаждение помещения в жару из-за очень высокого давления при высоких температурах окружающей среды. Хладагент R410a это некий баланс между возможностью работы кондиционера как на нагрев, так и охлаждение.

Вот, кстати, хороший документальный фильм снятый в СССР и рассказывающий о том, как устроен тепловой насос. Рекомендую.
18. Любой ли кондиционер можно использовать для работы на обогрев? Нет, не любой. Хотя на фреоне R410a и работают почти все современные кондиционеры, не менее важны и другие характеристики. Во-первых кондиционер должен иметь четырехходовой клапан, позволяющий так сказать переключиться на «реверс», а именно поменять местами конденсатор и испаритель. Во-вторых, обратите внимание, что компрессор (он расположен справа снизу) находится в теплоизолированном кохуже и имеет электрический подогрев картера. Это нужно для того, чтобы всегда поддерживать положительную температуру масла в компрессоре. По факту, при температуре окружающей среды ниже +5 градусов по Цельсию даже в выключенном состоянии кондиционер потребляет 70 ватт электрической энергии. Второй, важнейший момент — кондиционер должен быть инверторным. То есть и компрессор и электромотор крыльчатки должны иметь возможность изменять производительность в процессе работы. Именно это позволяет тепловому насосу эффективно работать на обогрев при наружной температуре ниже -5 градусов по Цельсию.

19. Как мы знаем, на теплообменнике внешнего блока, который является испарителем во время работы на обогрев, происходит интенсивное испарение хладагента с поглощением тепла из окружающей среды. Но в уличном воздухе находятся пары воды в газообразном состоянии, которые конденсируются, а то и кристаллизуются на испарителе из-за резкого снижения температуры (уличный воздух отдает свою теплоту хладагенту). А интенсивное обмерзание теплообменника приведет к снижению эффективности теплоосъема. То есть, по мере снижения температуры окружающей среды необходимо «притормозить» и компрессор и крыльчатку, чтобы обеспечить наиболее эффективный теплосъем на поверхности испарителя.

Идеальный тепловой насос работающий только на обогрев должен иметь площадь поверхности внешнего теплообменника (испарителя) в несколько раз превышающую площадь поверхности внутреннего теплообменника (конденсатора). На практике мы возращаемся к тому самому балансу, что тепловой насос должен уметь работать как на обогрев, так и охлаждение.
20. Слева можно видеть практически полностью покрытый инеем внешний теплообменник, кроме двух секций. В верхней, не замерзшей, секции фреон имеет еще достаточно высокое давление, что не позволяет ему эффективно испаряться с поглощением тепла из окружающей среды, в нижней же секции он уже перегрет и не может больше забирать тепло извне. А фотография справа дает ответ на вопрос почему внешний блок кондиционера был установлен на фасаде, а не спрятан от глаз на плоской кровле. Именно из-за воды, которую нужно отводить от дренажного поддона в холодное время года. Отводить эту воду с кровли было бы значительно сложнее, чем с отмостки.

Как я уже писал, во время работы на обогрев при отрицательной температуре на улице испаритель на внешнем блоке обмерзает, на нём кристаллизуется вода из уличного воздуха. Эффективность обмерзшего испарителя заметно снижается, но электроника кондиционера в автоматическом режиме контролирует эффективность теплосъема и периодически переключает тепловой насос в режим разморозки. По сути режим разморозки это прямой режим кондиционирования. То есть из помещения забирается тепло и переносится на внешний, обмерзший теплообменник, что растопить на нём лед. В это время вентилятор внутреннего блока работает на минимальной скорости, а из воздуховодов внутри дома поступает прохладный воздух. Цикл разморозки обычно длится 5 минут и происходит каждые 45-50 минут. Ввиду высокой тепловой инерционности дома, никакого дискомфорта во время разморозки не ощущается.
21. Вот таблица теплопроизводительности данной модели теплового насоса. Напомню, что номинальное потребление энергии составляет чуть более 2 кВт (ток 10А), а теплоотдача колеблется от 4 кВт при -20 градусах на улице, до 8 кВт при уличной температуре +7 градусов. То есть коэффициент конвертации составляет от 2 до 4. Именно во сколько раз тепловой насос позволяет экономить энергию по сравнению с прямым преобразованием электрической энергии в тепловую.

Практика показывает, что средний коэффициент конвертации с учетом потерь в самые холодные зимние месяцы в Московской области составляет 2,5. Но не забывайте про межсезонье и даже лето. А как я уже писал выше, если у вас энергоэффективный, хорошо теплоизолированный дом, без паразитных источников тепла, то даже летом солнце не способно его прогреть до комфортной температуры +22 градуса и в холодние летние дни потребуется также использовать тепловой насос для обогрева. А при уличной температуре более +10 градусов мы получим пятикратную (!) экономию электроэнергии по сравнению с электрическими конвекторами.
Кстати, есть еще один интересный момент. Ресурс у кондиционера при работе на обогрев в разы выше, чем при работе на охлаждение.
22. Осенью прошлого года я установил счетчик электрической энергии Smappee, который позволяет вести статистику энергопотребления по месячно и предоставляет более менее удобную визуализацию проведенных измерений.

23. Smappee был установлен ровно год назад, в последних числах сентября 2015 года. Он также пытается показать стоимость электрической энергии, но делает это исходя из заданных вручную тарифов. А с ними есть важный момент — как известно, у нас повышают цены на электроэнергию 2 раза в год. То есть за представленный период измерений тарифы менялись 3 раза. Поэтому не будем обращать внимание на стоимость, а подсчитаем количество потребленной энергии.

На самом деле с визуализацией графиков потребления у Smappee есть проблемы. Например, самый короткий столбец слева это потребление за сентябрь 2015 года (117 квтч), т.к. у разработчиков что-то пошло не так и на экране за год почему-то 11, а не 12 столбцов. Но суммарные цифры потребления подсчитаны безошибочно.
А именно, 1957 квтч за 4 месяца (включая сентябрь) в конце 2015 года и 4623 квтч за весь 2016 год с января по сентябрь включительно. То есть суммарно было израсходовано 6580 квтч на ВСЁ жизнеообеспечение загородного дома, который круглогодично отапливался, независимо от нахождения в нём людей. Напомню, что летом этого года впервые пришлось использовать тепловой насос для обогрева, а на охлаждение летом он не работал ни разу за все 3 года эксплуатации (кроме автоматических циклов разморозки, разумеется). В рублях, по текущим тарифам в Московской области это менее 20 тысяч рублей в год или около 1700 рублей в месяц. Напомню, что в эту сумму входит: отопление, вентиляция, нагрев воды, плита, холодильник, освещение, электроника и техника. То есть это фактически в 2 раза дешевле, чем ежемесячная плата за квартиру в Москве аналогичной площади (разумеется без учета взносов на содержание, а также сборов на капитальный ремонт).
24. А теперь давайте подсчитаем сколько же денег позволил сэкономить тепловой насос в моём случае. Сравнивать будем электрическим отоплением, на примере электрокотла и радиаторов. Считать буду по докризисным ценам, которые были на момент установки теплового насоса осенью 2013 года. Сейчас тепловые насосы подорожали из-за обвала курса рубля, а техника вся импортная (лидеры по производству тепловых насосов — японцы).

Электрическое отопление:
Электрический котел — 50 тыс рублей
Трубы, радиаторы, фитинги и т.д. — еще 30 тыс. рублей. Итого материалов на 80 тысяч рублей.
Тепловой насос:
Канальный кондиционер MHI FDUM71VNXVF (внешний и внутренний блок) — 120 тыс. рублей.
Воздуховоды, адаптеры, теплоизоляция и т.д. — еще 30 тыс. рублей. Итого материалов на 150 тысяч рублей.
Установка своими руками, но в обоих случаях по времени это примерно одинаково. Итого «переплата» за тепловой насос по сравнению с электрокотлом: 70 тысяч рублей.
Но это не всё. Воздушное отопление с помощью теплового насоса это заодно кондиционер в теплое время года (то есть кондиционер все равно нужно ставить, так ведь? значит добавим еще минимум 40 тысяч рублей) и вентиляция (обязательна в современных герметичных домах, еще минимум 20 тысяч рублей).
Что имеем? «Переплата» в комплексе составляет всего 10 тысяч рублей. Это еще только на стадии ввода системы отопления в эксплуатацию.
А дальше начинается эксплутация. Как я уже писал выше, в самые холодные зимние месяцы коэффициент преобразования составляет 2,5, а в межсезонье и летом можно принять его равным 3,5-4. Возьмем усредненный годовой СОР равный 3. Напомню, что за год в доме расходуется 6500 квтч электрической энергии. Это суммарное потребление на все электрические приборы. Возьмем для простоты расчетов по минимуму, что тепловой насос потребляет из этой суммы всего лишь половину. То есть 3000 квтч. При этом в среднем за год он отдал 9000 квтч тепловой энергии (6000 квтч «притащил» с улицы).
Переведем перенесенную энергию в рубли, предположив, что 1 квтч электрической энергии стоит 4,5 рубля (усредненный дневной/ночной тариф в Московской области). Получаем 27000 рублей экономии, по сравнению с электрическим отоплением только за первый год эксплуатации. Вспомним, что разница на стадии ввода системы в эксплуатацию составляла всего 10 тысяч рублей. То есть уже за первый год эксплуатации тепловой насос СЭКОНОМИЛ мне 17 тысяч рублей. То есть он окупился в первый же год эксплуатации. При этом напомню, что это не постоянное проживание, при котором экономия была бы еще больше!
Но не забываем про кондиционер, который конкретно в моем случае не потребовался ввиду того, что построенный мною дом оказался переутепленным (хотя и используется однослойная стена из газобетона без дополнительного утепления) и он просто не нагревается летом на солнце. То есть скинем 40 тысяч рублей из сметы. Что имеем? ЭКОНОМИТЬ на тепловом насосе в таком случае я стал не с первого года эксплуатации, а со второго. Не велика разница-то.
Но если мы возьмем тепловой насос класса «вода-вода» или даже «воздух-вода», то цифры в смете будут совершенно иными. Именно поэтому тепловой насос «воздух-воздух» это лучшее соотношение цена/эффективность на рынке.
25. И напоследок несколько слов про электрические отопительные приборы. Меня замучали вопросами о всяких инфракрасных обогревателях и нано-технологиях не сжигающих кислород. Отвечу коротко и по делу. Любой электрический обогреватель имеет КПД 100%, то есть вся электрическая энергия переходит в тепловую. На самом деле это касается любых электрических приборов, даже электрическая лампочка дает тепло ровно в том количестве, в котором она его получила из розетки. Если же говорить про инфракрасные обогреватели, то их преимущество заключается в том, что они греют предметы, а не воздух. Поэтому самое разумное применение для них — обогрев на открытых верандах в кафе и на автобусных остановках. Там, где есть необходимость передать тепло напрямую предметам/людям, минуя нагрев воздуха. Аналогичная история про сжигание кислорода. Если где-то в рекламном проспекте вы видите эту фразу, знайте — производитель держит покупателя за лоха. Горение это реакция окисления, а кислород это окислитель, то есть он сам себя сжечь не может. То есть это все бред дилетантов, прогулявших уроки физики в школе.

26. Еще одним вариантом экономии энергии при электрическом отоплении (не важно, прямой конвертацией или с помощью теплового насоса) является использование теплоемкости ограждающих конструкций (или же специального теплоаккумулятора) для накопления тепла при использовании дешевого ночного электрического тарифа. Именно с этим я и буду экспериментировать этой зимой. По моим предварительным расчетам (с учетом того, что в ближайший месяц я буду платить по сельскому тарифу на электроэнергию, т.к. строение уже зарегистрировано как жилой дом), даже несмотря на рост тарифов на электроэнергию, в следующем году я заплачу за содержание дома менее 20 тысяч рублей (за всю потребленную электрическую энергию на отопление, нагрев воды, вентиляцию и технику с учетом того, что в доме круглогодично поддерживается температура примерно 18-20 градусов тепла, независимо от того есть ли в нём люди).

Что в итоге? Тепловой насос в виде низкотемпературного кондиционера класса «воздух-воздух» это самый простой и доступный способ экономии на отоплении, что вдвойне может быть актуально при существовании лимита электрических мощностей. Я полностью доволен установленной отопительной системой и не испытываю какого-либо дискомфорта от её эксплуатации. В условиях Московской области использование воздушного теплового насоса полностью себя оправдывает и позволяет окупить инвестиции не позднее, чем через 2-3 года.
Кстати, не забывайте что у меня еще есть Instagram, в котором я публикую ход работ практически в реальном времени — https://www.instagram.com/victorprofessor
Все материалы про строительство загородного дома своими руками в хронологическом порядке можно посмотреть .

Принцип работы и схема теплового насоса

Теплонасосы способны работают от натуральных источников энергии. Прибор выделяет тепло без дизельного или твердого топлива.

При обустройстве отопительной системы главную роль занимает теплонасос. Его постройка требует особого внимания.

Сам насос не может выделить тепло, он просто переносит его в дом. На это требуется небольшое количество электричества. Достаточно иметь тепловой насос и внешний источник энергии для обогрева здания. Работает насос противоположно холодильнику. Тепло забирается снаружи и направляется в помещение.

Схема теплового насоса:

  1. Компрессор – промежуточный элемент системы;
  2. Испаритель – элемент передачи низкопотенциальной энергии;
  3. Дроссельный клапан – по нему перемещается фреон в испаритель;
  4. Конденсатор – в нем хладагент охлаждается и отдает свое тепло.

Сначала энергия выделяется из природных источников и попадает в испаритель. Дальше тепло передается фреону. В компрессоре хладагент поддается высокому давлению и его температура повышается. Дальше фреон направляется в конденсатор, где и происходит его отдача отопительной системе. Хладагент возвращается в испаритель, где процесс повторяется.

Энергосберегающие трубы для сохранения энергии помогут сэкономить и сберечь тепло. Как установить такую систему можно узнать на сайте: https://homeli.ru/stroitelstvo-doma/inzhenernye-sistemy/kanalizatsiya/energosberegayushchie-sistemy

Самодельный тепловой насос из холодильника: этапы создания

Тепловой насос – достаточно дорогой прибор. Но при желании можно своими руками соорудить устройство из старого холодильника или кондиционера. Холодильное устройство имеет в своей системе две необходимые для насоса детали – конденсатор и компрессор.

Этапы сборки теплового насоса из холодильника:

  1. Сначала собирается конденсатор. На вид это волнистый элемент. В холодильнике он размещен сзади.
  2. Конденсатор необходимо уложить в прочный каркас, который хорошо удерживает тепло и переносит действие высоких температур. В определенных случаях приходится разрезать тару, чтобы беспроблемно установить конденсатор. По окончанию монтажа емкость сваривается.
  3. Дальше идет установка компрессора. Необходимо, чтобы агрегат был в хорошем состоянии.
  4. Функцию испарителя выполняет обыкновенная пластиковая бочка.
  5. Когда все будет подготовлены, следует скрепить элементы между собой. К отопительной системе теплообменник крепится трубами из ПВХ.

Так получается самодельный тепловой насос. Закачку фреона должен проводит профессионал, так как жидкость непроста в работе. К тому же для ее закачки необходимо иметь специальное оборудование.

Тепловые насосы из старой бытовой техники отлично подходят для обогрева небольших помещений хозяйственного назначения.

Холодильник может выполнить роль радиатора. Потребуется сделать два воздухоотвода, которые обеспечат его циркуляцию. Один отвод принимает холодный воздух, второй – выпускает горячий.

Биогаз набирает популярность, как альтернативный источник энергии. О его преимуществах читайте в статье: https://homeli.ru/stroitelstvo-doma/inzhenernye-sistemy/kanalizatsiya/biogaz-svoimi-rukami

Виды теплонасосов: нюансы работы теплообменника фреон-вода

Природный источник энергии может представлять собой систему скважинного типа, грунтового или водоемного. Каждый вариант уникальный. Отличается принцип работы и монтаж.

Когда источником энергии является скважина, необходимо пробурить соответствующее отверстие в земли. В 1 м источника можно добыть 50-60 Вт энергии. Для нормальной работы теплонасоса потребуется 20 м.

Особенности получения энергии со скважины:

  1. Главные плюсы – компактность и большая теплоотдача;
  2. Минус – сложности при бурении скважины.

Когда источником тепла выступает грунт, то труба залегает на глубину ниже уровня промерзания земли. Для укладки трубы можно вырыть котлован или траншею.

Добыча энергии с земли достаточно трудный процесс, который требует большой площади, которая не будет доступной к эксплуатации.

Если поблизости размещены водоемы, то можно положить трубу в источник воды. Главное требование – достаточная глубина. В 1 кв м воды можно получить 30 Вт энергии. Для фиксации труб на глубине к ним прикрепляется груз.

В некоторых случаях в качестве источника используют воздух. Такой насос содержит хладагент. В этом случае подходит фреон из холодильника. Вещество забирает тепло из воздуха и отдает помещению.

Все составляющие солнечной батареи доступны и не дороги. И собрать конструкцию можно своими руками. обо всех этапах работы читайте в следующем материале: https://homeli.ru/stroitelstvo-doma/inzhenernye-sistemy/otoplenie/solnechnaya-batareya-svoimi-rukami

Тепловой насос для отопления своими руками

Такое устройство станет находкой для владельцев дач и частных домов, которые не подключены к газу. Главное преимущество такого способа обогревания помещения перед другими в том, что тепловые насосы потребляют мало энергии и способны довольно эффективно обогревать помещение. Таким тепловым насосом, как изготовил автор, происходит частичное обогревание дома в 2.5 этажа и площадью 213 кв. метров.
В установке используется два компрессора 24000 БТУ, в итоге потребление электричества составляет около 4-ех киловатт в час, а выделяется теплоты при этом 16-18 киловатт.
Два компрессора нужно для того, чтобы увеличить их срок службы, а также снизить пусковые токи, которые возникают при включении.
Материалы и инструменты для изготовления:
— два компрессора;
— терморегулирующий клапан;
— металлический бак для создания конденсатора;
— медная труба для создания змеевика;
— пластмассовая бочка для создания испарителя (около 120 л);
— кронштейны и другие крепежные элементы;
— ТРВ;
— однофазное пусковое реле и другие элементы.
Процесс изготовления теплового насоса:
Шаг первый. Установка компрессора
Мощность компрессора должна быть около 25500 Бту. он крепится к стене так, как указано на картинке. Для этого используются кронштейны L-300мм.
Шаг второй. Устройство конденсатора
Для создания конденсатора понадобится бак из нержавейки емкостью 120 литров. Бак был разрезан на две части и затем в него был вставлен змеевик фреоновода. После этого бак сварили назад. Также на этом этапе нужно будет приварить несколько технических резьбовых соединений.
Площадь медной трубы змеевика рассчитывается по формуле M2 = kW/0,8 x ∆t.
∆t – разница температуры воды на входе и выходе системы. У автора это 35с-30с= +5 градусов С.
M2 — площадь трубы змеевика (квадратные метры).
kW – мощность тепловыделения системой (с работающим компрессором) в кВт.
0,8 – коэффициент теплопроводности меди/воды при условии противотока сред.
В итоге площадь теплообмена змеевика составляет порядка двух квадратных метров.
Змеевик делается из медной трубки, которая наматывается на любой подходящий по форме предмет, у автора это газовый баллон. Общая длина трубы составила 35 метров. Чтобы конструкция была прочной, ее нужно зафиксировать с помощью двух алюминиевых реек и медной проволоки.
Концы змеевика выводятся при помощи сантехнических выводов. Вместо обжимного кольца использовалась льняная веревка с герметиком.
Шаг третий. Устройство испарителя
Для создания испарителя понадобится пластмассовая бочка на 127 литров с широкой горловиной. Испаритель изготавливается по такому же принципу, как и конденсатор. То есть понадобиться медная труба длиной 25 метров, из которой нужно сделать змеевик.
Такой испаритель является затопленного типа. Жидкий фреон заходит через змеевик снизу, затем в нем испаряется и далее распространяется уже в виде газа, движется затем к компрессору. При этом улучшается теплоотдача.
Переходы подойдут пластмассовые PE 20*3/4’, от питьевой воды. Подача и сток воды происходит через обыкновенные канализационные трубы. Впоследствии испаритель крепится на кронштейны размером L-400мм.
Шаг четвертый. Подключение ТРВ
ТРВ используется фирмы Honeywell. При пайке нужно быть крайне осторожным, так как ТРВ не выдерживает температуры более 100 градусов. Перед пайкой нужно обмотать ТРВ мокрой тряпочкой, так будет происходить охлаждение.
Шаг пятый. Сборка устройства.
Для сборки понадобится комплект для жесткой пайки Rotenberg. Еще нужно будут три электрода с нулевым содержанием серебра и один электрод с содержанием серебра 40% для пайки в стороне компрессора. В итоге соединение будет вибростойким.
нужно не забыть впаять в систему заправочный клапан Шредера, на нем должен быть ниппель для подключения шланга. Он припаивается на входе в компрессор. Входная труба выравнивателя ТРВ припаивается после испарителя, но перед баллоном. Перед пайкой золотник нужно вывернуть, так как резиновый уплотнитель расплавится.
Шаг шестой. Заправка фреоном
Перед заправкой нужно выгнать из системы воздух, для этого в нее подается некоторое количество фреона для его вытеснения. Для заправки понадобится не более 2 кг фреона. Для заправки понадобится манометр, с помощью него можно следить за процессом.
Шаг седьмой. Электроника
Для запуска системы необходимо пусковое реле, так пусковые токи составляют около 40 А. Обязательно должен иметься предохранитель, а также щиток с DIN рейкой. Еще понадобится тепловой датчик, с помощью него система будет автоматически выключаться при достижении определенной температуры.
По словам автора, сразу же после первого запуска система заработала так, как нужно. Теперь можно подключать контур отопления и вести тепло по дому туда, куда нужно. После этого нужно будет сделать корректировку давления и ТРВ.
Доставка новых самоделок на почту

Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!

*Заполняя форму вы соглашаетесь на обработку персональных данных

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. .

Принцип работы теплового насоса

Для этих целей используется такой агрегат, как тепловой насос. Фактически многие из технически образованных людей его уже знают – он реализован в любой современной холодильной либо климатической системе.

Причем в сплит-системах кондиционирования этот агрегат работает самым непосредственным образом: в режиме обогрева они аккумулируют внешнее атмосферное тепло, передавая его на внутренние теплопередающие устройства – вентилируемые радиаторы.

Сразу следует оговориться, что посредством такого аппарата эффективным будет отопление любых изолированных пространств при температуре источника тепла, превышающей один градус по Цельсию.

  • Весной и осенью подобные устройства могут эксплуатироваться в качестве практически бесплатных источников тепловой энергии.
  • Летом они могут работать в обратном режиме – в качестве систем микроклиматического охлаждения.
  • Зимой, при минусовой температуре, скорее всего необходимо будет пользоваться другими источниками отопления, поскольку подобные системы способны аккумулировать тепловую энергию исключительно при положительных температурах, либо получать ее от незамерзающих источников, например, из глубинных скважин, в которых всегда положительные температурные показатели.

Принцип действия этого агрегата основоположен на законе Карно. Он основан на аккумуляции низкопотенциальной тепловой энергии хладагентом с последующей передачей ее потребителю.

  1. Хладагент, имеющий более низкую температуру, нагревается от внешних источников – грунта, глубинных скважин, естественных водоемов, при этом переходя в газообразное агрегатное состояние.
  2. Он принудительно сжимается компрессором, при этом нагреваясь еще больше, и вновь обретает жидкое состояние, высвобождая при том всю накопленную тепловую энергию в радиаторах отопления.
  3. Цикл повторяется – жидкий хладагент вновь попадает во внешний контур системы, где, испаряясь, заряжается тепловой энергией от внешних источников тепла.

При этом расходуется только электроэнергия, необходимая для сжатия и циркуляции в системе хладагента, то есть, обогрев внутренних помещений осуществляется максимально экономичным способом.

Виды тепловых насосов

Существует три основные модификации тепловых насосов:

      • «вода – вода»;
      • «грунт – вода»;
      • «воздух – вода».

Теплогенераторы класса «вода – вода»

Сегодня теплонасосные агрегаты широко применяются в высокоразвитых странах Европы. Например, в Нидерландах посредством этого теплообменного устройства отапливаются целые коттеджные поселки, поскольку там имеется изобилие геотермальных шахт, заполненных водой с постоянной температурой в 32 градуса по Цельсию. А это практически дармовой источник тепла.

Подобная вариация теплогенерирующего оборудования называется «вода – вода». К этой категории относятся любые типы тепловых систем, использующих в качестве источников тепловой энергии жидкие среды.

Обычно этот принцип действия реализуется следующим образом:

  • теплая вода из скважины подается к внешнему теплообменнику, после чего она сбрасывается в другую скважину либо в близлежащий водоем.
  • радиатор монтируется на дне незамерзающего водоема. Исполняется он из нержавеющей либо металлопластиковой трубы. Причем для экономии дорогостоящего хладагента – фреона – зачастую применяется промежуточный контур теплоносителя, заполненный «незамерзайкой» — тосолом либо раствором гликоля (антифризом).

Стоимость агрегатов типа «вода – вода» варьируется в значительных пределах и зависит, в первую очередь, от мощности теплогенерации и страны-производителя.

Так, самый маломощный агрегат российского производства, способный развивать тепловую мощность порядка 6 кВт, обойдется в сумму почти 2000 долларов, а промышленноe двухкомпрессорное оборудование мощностью более 100 кВт, будет стоить уже почти тридцать тысяч долларов США.

Агрегаты класса «воздух – вода»

При использовании в качестве источника тепловой энергии атмосферы либо солнечных лучей тепловой насос считается класса «воздух – вода». В этом случае на внешний теплообменник зачастую устанавливается циркуляционный вентилятор, дополнительно нагнетающий теплый внешний воздух.

Стоимость 18-киловаттного воздушного теплового аппарата этого класса российского производства начинается с отметки в 5000 долларов США, а за двенадцатикиловаттное оборудование японской компании Fujitsu потребителю придется выложить уже почти 9 тысяч долларов США.

Оборудование класса «грунт – вода»

Существует также вариация, использующая в качестве источника тепловой энергии потенциал, накопленный в грунте.
Возможны два типа подобных конструкций: вертикальная и горизонтальная.

  • Вертикальная — компоновка теплосборного коллектора линейная. Вся система размещается в вертикальных траншеях, глубина которых составляет 20…100 метров.
  • Горизонтальная — компоновки внешнего коллектора, обычно металлопластиковые спирально свитые трубы, укладываются в 2…4-метровые горизонтальные траншеи. Причем в этом случае, чем больше глубина залегания внешнего теплоприемника, тем лучше работает отопление «из земли».

Цена на агрегаты класса «грунт – вода» сравнима с оборудованием аналогичной мощности класса «вода – вода» и начинается с отметки в две тысячи долларов США за шестикиловаттный насос.

Плюсы и минусы отопительной системы, основанной на тепловом насосе

К положительным свойствам тепловых насосов можно отнести:

  • Максимальную экономию энергоресурсов. Если при обычно схеме отопления загородного дома вся затраченная энергия (причем с КПД максимум 60–70 процентов) преобразуется в тепловую, то в случае применения теплового насоса осуществляется транспортировка внешней рассеянной энергии в локальные участки, обозначенные внутренними радиаторами отопления. Таким образом, вся потребляемая электроэнергия расходуется исключительно на сжатие, транспортировку хладагента и циркуляцию промежуточного теплоносителя во внешнем контуре.
  • Обратимость. Большинство конструкций современных приборов способны функционировать и в обратном направлении, то есть при превышении температуры внутри здания определенного предела, заданного значением температуры среды, в которой расположен внешний контур агрегата, возможна работа оборудования на охлаждение внутренних замкнутых пространств.
  • Абсолютная безопасность. В отличие от традиционных средств отопления – котлов газовых, твердотопливных, при функционировании теплового насоса не происходит совершенно никаких вредных выделений в окружающую среду. Для работы теплового оборудования, основанного на аккумуляции внешней рассеянной тепловой энергии и переносе ее в конкретную точку, необходимо лишь сравнительно небольшое потребление электрической энергии. А в сравнении с аналогичными показателями электрических котлов отопления, тепловые насосы могут дать многократную фору.

Отзыв: В прошлом году приобрел тепловой насос моноблок системы «воздух — вода» для отопления загородного дома. Дорого, конечно, но надеюсь, лет за 10 окупится. Поставщик сам установил насос и подключил к системе отопления, все работает практически без моего участия. Выбором доволен.

К недостаткам теплового насоса относят:

  • Высокую стоимость монтажа. Для нормальной работы теплового оборудования необходимо приложить значительные усилия – вырыть траншеи большой продолжительности, проложить глубокие скважины либо преодолеть зачастую значительные расстояния до ближайшего водоема.
  • Необходимость качественной реализации системы. Малейшая утечка хладагента либо промежуточного теплоносителя способна свести на нет все старания. Поэтому при закладке схемы любой вариации необходимо использовать труд исключительно квалифицированных специалистов и в процессе эксплуатации системы исключить риск ее разгерметизации.

Тепловой насос своими руками. Сборка и установка

Конечно, первичные вложения на организацию отопления дома согласно этой технологии весьма высоки. Поэтому у многих обывателей, заинтересовавшихся этой сверхэконмичной системой, возникает желание хоть немного сэкономить, соорудив ее самостоятельно.

Для этого нужно:

  • Приобрести компрессор. Подойдет любой работоспособный агрегат от бытовой сплит-системы кондиционирования.
  • Соорудить конденсатор. В самом простом случае в качестве оного может выступать обычный бак из нержавейки, объем которого составляет 100 литров. Он разрезается напополам, внутри его монтируется змеевик из медной трубы малого диаметра. Толщина стенки змеевика должна быть не ниже одного миллиметра. После раскрепления змеевика необходимо обратно сварить бак в целостную конструкцию, соблюдая условия герметичности.
  • Собрать испаритель. Это может быть и пластиковая 60–80-литровая емкость с вмонтированной в нее трубой на ¾ дюйма.
  • Для организации внешнего контура, расположенного в грунте, лучше использовать современные металлопластиковые трубы – они намного более долговечные, нежели классические металлические и монтаж их гораздо надежнее и быстрее.

Осталось только пригласить мастера по холодильному оборудованию, чтобы он, используя специализированную оснастку, качественно загерметизировал все стыки системы и заправил ее фреоном.

Смотрите видео о монтаже теплового насоса Daikin Altherma:

На этом монтаж теплогенерирующей установки заканчивается. Можно пользоваться всеми ее преимуществами, главным из которых является низкое потребление энергоресурса – электроэнергии при значительной мощности теплогенерации.

Записи созданы 4315

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Похожие записи

Начните вводить, то что вы ищите выше и нажмите кнопку Enter для поиска. Нажмите кнопку ESC для отмены.

Вернуться наверх